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Time-Dependent Foam Flotation Stripping Column
Operation

JUDY E. KIEFER and DAVID J. WILSON*

DEPARTMENT OF CHEMISTRY
VANDERBILT UNIVERSITY
NASHVILLE, TENNESSEE 37235

Abstract

A mathematical model for the time-dependent operation of a foam flotation
stripping column is presented. Solute and solvent balances are developed for
the stripping and foam drainage sections of the column, and a Langmuir iso-
therm is assumed for the surface-active solute. Results of computations with
the model illustrate the dependence of column performance on influent and air
flow rates, pulse hydraulic and solute concentrations, bubble size, and column
geometry. Boundary layer theory is used to calculate the efficiency of foam
flotation from a pool of liquid as a function of bubble size.

INTRODUCTION

Adsorptive bubble separation techniques are of some interest for the
removal of small amounts of heavy metals and other toxic substances
from aqueous solution. These methods have been reviewed by Lemlich
(I) and others (2—4, for example). Several mathematical models for foam
column operation have been published; these are generally obtained from
steady-state material balance considerations at the ends of the column
(1, 5, 6). Goldberg and Rubin discussed these models in some detail, and
analyzed a model of a stripping column without solute transfer in the
countercurrent section (7). Wang’s treatment of continuous bubble frac-
tionation includes axial dispersion and equilibrium adsorption isotherms
(8). Cannon and Lemlich presented a detailed analysis assuming linear
isotherms (9), as has Lee (10). Fanlo and Lemlich (/1); Grieves,
Bhattacharyya, and their co-workers (/2); Valdes-Krieg, King, and
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Sephton (13); and Sastry and Fuerstenau (/4) have also examined the
modeling of flotation column operation.

We earlier analyzed a continuous flow foam flotation column operating
at steady state in the stripping mode (/5). The model included effects of
axial dispersion, rate of mass transfer, and nonlinear isotherms. It did
not, however, provide a way of calculating the wetness of the foam. Also,
in actual practice such columns are generally not operated in the steady
state; in wastewater treatment it is almost the rule that influent flow rate
and solute concentrations vary considerably with time. In order to predict
the effects of such variations, a time-dependent model is needed. This
would permit estimation of the solute removal efficiency of a column
under intermittent shock hydraulic and concentration loadings.

Here we develop a model for the time-dependent operation of a con-
tinuous-flow foam flotation column consisting of a stripping section and
a foam drainage section. We use Haas and Johnson’s analysis of foam
drainage (6) and detailed material balances throughout the column, The
resulting differential equations are integrated forward in time by means
of a predictor-corrector method. We then give a discussion of some of
the numerical results obtained. We close with an application of boundary
layer theory to the calculation of the efficiency of particle flotation by
bubbles rising through a pool of liquid.

ANALYSIS

We first address the problem of foam drainage. The foam is assumed
to consist of bubbles in the shape of regular dodecahedra, as is generally
assumed in fairly dry foams (6, /6). Recall that a dodecahedron is a regular
polyhedron with 12 regular pentagonal faces and 30 edges. If we let / be
the length of one of these edges, then the surface area of the dodecahedron
is 20.64578/2, and its volume is 7.66312/° (/7). We also assume that all
the bubbles are of identical size, with a volume equal to the volume of a
sphere of diameter d.

In following the analysis of Haas and Johnson (/6), we assume that
the Plateau borders formed by three adjacent bubbles can be approxi-
mated as capillaries of diameter d, where 6 depends on the wetness of the
foam. The liquid in these capillaries flows downward due to gravitational
forces; the flow can be described by Poiseuille’s equation

__AP§? .
= 3o O

where v = velocity of the liquid relative to the capillary
n = liquid viscosity, poise
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= capillary length
AP = pressure drop along the length of the capillary

The pressure drop due to the hydrostatic head in the capillary is given by
AP = pglcos 8 2)

where p = liquid density
g = gravitational constant
6 = angle at which capillary is inclined from the vertical

With this result, Eq. (1) becomes

pg cos 86*
Vo= —————

33 3)

the velocity for liquid in a capillary inclined at an angle 8 from the vertical.
The component of this velocity in the downward direction, v,, is v cos 6.
The average velocity of the liquid in the z-direction (downward) relative
to the rising foam, 7,, is then given by

n/2
f v, sin 0 df

0

U, = mgr
j. sin @ df

0o

nf2
g jo cos” @ sin 6 dO

/2
321 g sin 0 do

0

_1pgd
=3 3, @

Since the foam is moving upward at a velocity v,, the downward velocity
relative to the laboratory of the liquid in the Plateau borders is

Vg = l—)z - U (5)

We define epy as the volume of liquid in the Plateau borders per unit
volume of foam. This is also the area available for liquid flow downward
per unit area of column cross section. The liquid flux (cm3/cm?s) through
the Plateau borders relative to the lab is therefore

F = (0, — v)epp ©)

Liquid is also contained in the thin films (lamellae) which are the
boundary surfaces of the dodecahedra, so we write
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tpp + &y = ¢ @)

where ¢ = volume of liquid per unit volume of foam
&, = volume of liquid in lamellae per unit volume of foam

Haas and Johnson make the assumption that the Plateau borders contain
two-thirds of the liquid in the foam; we leave this fraction as an adjustable
parameter, f.

There are 6(1 — ¢)/nd> bubbles per unit volume of foam, 10 Plateau
borders per dodecahedral bubble (30 edges per dodecahedron, with three
edges of adjacent dodecahedra meeting to form a border), and each
Plateau border has a volume of n8%//4, where / is the length of an edge of
a dodecahedron. This yields

6(1 —¢) mdi
Epg = 7 IOT (8)

Since / = 0.40884 and we are assuming that

epp = Pe ®)
we obtain
Epg = 6.132(17‘{—28)52 (10)
and
62 = 0.1631 lﬁg_—f% (1)

The velocity of the bubble surfaces upward is given by

G

U T4 — o)

(12)
where G = gas flow rate, mL/s
A = column cross section, cm?

Combining Eqgs. (4), (6), (9), (11), and (12) results in an expression for
F, the liquid flux downward through the Plateau borders, as a function
of ¢, d, B, and other known quantities:

spgd® B GBe
=& A1 =9

F= 1699 x 10~ (13)

The bubble diameter 4 can be determined experimentally for various gas
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dispersion heads. Lemlich (/8) has noted that for a distribution of bubble
sizes, d? should be calculated as

d* = Z nidi3/z nd;

p, 1, G, and A are also known, and ¢ is calculated as a function of time
and position by means of solvent balances, as shown below. This leaves
p as the only adjustable parameter.

In our model we require an expression for the surface area per unit
volume of foam, S. The surface area of a dodecahedron is 3.4506d? (17),
which yields for the surface area per unit volume of bubbles

3.4506d* 6.59

nd’l6  d
and then

= %%(l —¢€) (14)

Equations (12), (13), and (14) will be used in the material balance
equations below to express derivatives in terms of known properties,
B, &, and solute concentration ¢, where ¢ and ¢ are function of time and
position in the column.

In foam flotation the solute to be removed is (or is made) surface active
so that it will adsorb to the surface of a rising bubble and be removed in
the foam. Huang (/9) and Kennedy (20) have shown that the surface
concentration of a surface-active solute of floc reaches its local equilibrium
concentration quite quickly under these conditions—the decay constant
for the approach to equilibrium is the order of a microsecond. We can
therefore safely assume that the surface concentration of solute is always
in local equilibrium with the liquid concentration. We use a Langmuir
adsorption isotherm

Fmaxc

Tepte

(15)

where T = surface concentration, mol/cm?
I,,. = maximum possible surface concentration
concentration of solute in liquid when I' = 41" .,
concentration of solute in liquid, mol/cm?

C1)2
c

The column is partitioned into N horizontal slabs of equal size, as
shown in Fig. 1, so that we may carry out solute and solvent material
balances. Each slab is considered to be completely mixed, and we assume
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Foamate
T T
N-I
Draincge
section
Influent | 4
— s
Stripping
section
2
Al | 1
| !
Air Effluent

FiG. 1. The foam flotation column being modeled.

no mixing between adjacent slabs. Therefore, solvent flows into a slab
through Plateau borders only from the slab above it if F > 0 and from the
slab below it if F < 0; solvent also moves into the slab in the lamellae
rising from the slab through the drainage of its own Plateau borders and
from liquid in the lamellae of the bubbles leaving the slab. We also make
a similar analysis of solute movement; here we must take into account
transfer of solute between the liquid and surface phases.

In general, the solvent balance equations contain five terms, as described
above,

de, ,
7d7 = [Fn+1S (Fu+1) - IFn[ - Fn—‘ls(—Fn—t)

+ Vg n—18f -1 — Usngf,n]/Ax (16)
where F; = liquid flux through the Plateau borders in the jth slab; see
Eq. (13)
Sz =1ifz>0
=0ifz<0

v,,; = foam velocity in slab j, given by Eq. (12)
¢; = the value of ¢ in the jth slab
gs,; = (I — Pe;, the volume fraction of liquid in the lamellar films
in the jth slab
Ax = thickness of a slab
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The slabs are numbered from the bottom of the column. The correspond-
ing equations for the bottom and top slabs and the slab which receives
the feed to the column require modification. The equation for the bottom
slab does not contain the terms resulting from solvent entering from
below; the equation for the top (Nth) slab does not contain the term
resulting from solvent drainage from above. At the bottom

de
— = [F,S'(Fy) — |F\| — v, 12,,,)/Ax (17
dt

At the top

de
d—:’ =[—Fy_1S'(=Fy_) — |Fy| + UsN-18p N—1 — vs,st,N]/Ax (18)

At the slab containing the feed plane

dSc Q ’ ’
_‘}?=[ZFC+IS(F(:+1)_|Fc|_Fc-—lS(_Fc—l)
+ Us e lgf.c—-l - Us,cgf,c]/Ax (19)

where Q = volumetric feed rate, mL/s.

A slightly different equation is used if the feed enters directly at the top
of the column.

We let m,, be the mass of solute in slab n, and note that

m, = (S,I, + g,c,)AAx (20)
From Eq. (15)
rn = I-‘mm(cn/(cl/Z + C,,) (21)
SO
Snrmaxcn
m, = l:m + e,,c,,]AAx 22)

This can be written as a quadratic equation in c¢,:
0 = g,AAxc,” + (S,TpnadAx + 6,AAxcy )y — m)e, — m,cyn  (23)

which can be solved for ¢,. Substitution in Eq. (21) then yields [,.
Solute material balance on the nth slab then yields

dmn ! ’
ar A[S'(Fps )F s iCpiy — |Fle, — S (= Fy_ )Fy- 1641

+ vs,n—lgf,n—lc -1 = vs,nsf,ncn + vs,n—lsn—lrn—l - vs,nsnrn] (24)
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At the top of the column we have

dm ,
’f = A[—|Fyley — S' (= Fy_)Fy_16n—1 + Vg n—187 n—1CN-1

— Os nEr NN + Usn—1SN—1Tn—1 — Vs nShTA] (25)

At the bottom of the column

dm
71_1 = A[S'(F})F,c, — |File, — Us1€80,1C1 — Us,lslrl] (26)
At the feed plane

dmc o] ’ '
7 Qc® + A[S'(Foy DF 116041 — |Fele, = S'(—Fo~ )F._C.—

+ vs,c—lgf,c— 1€c—1 — Us,cr,cCc + vs,c—lsc—lrc—l - vs,cScrc] (27)

We integrate Eqs. (16)—(19) and (24)-(27) forward in time using a simple
predictor-corrector method having the following algorithm:

Starter:
dy
Aty = y(0) + Ar =~ (0) (28)
Predictor:
dy
¥t + At) = p(t — At) + 2A¢ I(t) (29)
Corrector:
_ At{ dy dy*
W+ At) = y(t) + —2—[2; (t) + W(Z + At)] (30)

We next need to determine the amounts of solute and water leaving
the top of the column as foamate and the bottom of the column as effluent.
From Eq. (25) we can see that the mass of solute leaving the top of the
column per second in the foamate is given by

Migam = A[—S'(— Fy)Fycy + v, nep yoy + 05 vSyIA] (3D
The volume of liquid leaving the top of the column per second is
Veoam = Al—S'(= Fy)Fy + v5 585 5] (32)

The mass of solute leaving the bottom of the column per second is
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Megey = AS'(F1)Fcy (33)
The volume of liquid leaving the bottom of the column per second is
Verr1 = AS'(F)F, (34)
The concentrations of the solute in the foamate and effluent are given by
Cfoam = Mfoam/Vfaam (35)
and
Cetrr = Megrr/Veen (36)

Several parameters can be used to characterize the quality of the
separation in various ways. One is the ratio of influent to effluent solute
flux,

Ryoiuie = Qc°[M gy 37
Another is the ratio of influent to foamate volumetric flow rates,
Rt = O/Vioam (38)
A third is the ratio of influent to effluent solute concentrations,
Reone = ¢°ley (39)
RESULTS

The parameters generally used in the computer program simulating
column operation are as follows:

column length 244 cm
column cross-sectional area 670 cm?
number of slabs into which the
column is partitioned 10
index of the feed plane slab 5
| - 6 x 1071° mol/cm?
€12 1 x 107° mol/cm®
air flow rate 400 mL/s
liquid flow rate 150 mL/s
B 0.75
bubble diameter 0.25cm
liquid density 1.0 g/mL
liquid viscosity 0.009 poise
influent concentration 1 x 1078 mol/cm?

At 0.1s
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The column parameters correspond to a small pilot-plant column we have
operated. These parameters, an initial column solute concentration of
10~° mol/mL, and a value of ¢ = 0.10 were used to initialize a run, which
was then simulated for 30 min of column operation. The resulting state
of the column was used as initial conditions for all of the runs described
below. This initialization procedure markedly reduces the computer time
required for the column to approach steady-state operation. All runs were
made on a DEC system 1099 computer.

The effect of influent concentration on effluent concentration for
various influent flow rates in steady-state operation is shown in Fig. 2.
The Langmuir isotherm we are using gives us quite good removal efficien-
cies up almost to the point at which the bubbles are saturated, above which
further increases in influent concentration result in a rather abrupt
deterioration of removal efficiency. Figures 3a and 3b show the rate of
approach to the new steady state when the influent concentration is
changed abruptly at time zero. The transient responses of the column to
square-wave shock influent concentration pulses of various heights and
durations are exhibited in Figs. 4-6. The time constant of the system
appears to be of the order of 5 min, and it is apparent that the column
can absorb short concentration overloads without discharging effluent
of the poor quality which one would expect on the basis of steady-state
performance.

The effect of influent flow rate on steady-state effluent solute concentra-
tion is shown in Fig. 7 for various influent concentrations. As the influent
solute flux increases with increasing flow rate, the column eventually

-9k
§ Iy 2
i 4
j' -i3p
8
3 L
'|7 L L L A —
o 3 6xi0™*

Ciope Moles/ml

FiG. 2. Effluent concentration as a function of influent concentration at various

flow rates in steady state operation. Influent flow rate = 250 (1), 200 (2), 150

(3), and 100 mL/s; other parameters as given in the text, as is the case through
Fig. 15.
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1510718 moles/mi 16rX10™"* moles/mi

Cotti

Ceftt

0 400 . 800 sec 0 ' 400 ' 800 sec

® ®

FiG. 3a. Effluent concentration as a function of time for influent concentrations
of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 x 1078 mol/mL (1 through 6).
FiG. 3b. Effluent concentration as a function of time for influent concentrations
of 3.5, 4.0, and 4.5 x 10~® mol/mL (I through 3).

1600 sec

Fic. 4. Effluent concentration as a function of time for 5-min square-wave

influent concentration pulses. The influent concentration is 1 X 1078 mol/mL

for 0 <t < 300s and for ¢ > 600s. For 300 < ¢t <600s, ci,y = 2.0 (1),
3.0(2),3.5(3), and 5.0 (4) x 10~% mol/mL.
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10p x107'® moles/mi

4

' 1600 sec

FiG. 5. Effluent concentration as a function of time for 10-min square-wave

influent concentration pulses. The influent concentration is 1 x 10-® mol/mL

for 0 <t < 300sand > 900s. For 300 < r << 900s, cingy = 2.0 (1), 3.0 (2),
3.5(3), and 4.0 (4) x 10~% mol/mL.

0r X107 moles a3
cm
6-
£
£t
2} ¢
o 806 , 1600 sec

Fic. 6. Effluent concentration as a function of time for square-wave influent

concentration pulses of various durations. cienn = 1 X 1078 mol/mL for

0 <t<300s and for 7 <t < 1800s. For 300 <t < 7, Cijan =5 x 1078
mol/mL. 7 = 600 (1), 750 (2), and 900 (3) s.

-Tr
3
2 .
2 L
3
s -lf
£
E |
Q
3
= -I5p
(o] 400 800 mi/sec

influent flow rate

F1G. 7. Steady-state effluent concentration as a function of influent flow rate.
Cinet = 1.0 (1), 2.0 (2), and 3.0 3) X 108 mol/mL.
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reaches the point where all the available air-water interface is saturated,
at which point the effluent concentration abruptly increases. The effects
of transient square-wave variations in the influent flow rate are shown in
Fig. 8. These runs show that small flow rate increases of long duration
result in less discharge of solute in the effluent than larger increase in
flow rate for correspondingly shorter time periods. Evidently foam flota-
tion columns should be used with flow equalization tanks if flow rate
transients are expected.

Air-water interface is the “‘reagent” which brings about solute removal;
if its availability is decreased by decreasing the air flow rate, one would
expect the efficiency of solute removal from the effluent to decrease. In
Fig. 9 we see that this is in fact the case, and that the column requires a

10p X107 moles/ml

3
18
¥l .
2k
|
(o] 800 ' 1600 sec

Fic. 8. Effluent concentration as a function of time for various square-wave

influent flow rate puises. The base influent flow rate is 150 mL/s. For Run 1

the influent flow rate for 300 < ¢ < 1200 s is 300; for Run 2, 300 < ¢ < 840s,
it is 400; for Run 3, 300 < ¢ < 750, it is 450 mL/s.

Cotf!

0 800 ' 1600 sec

FiG. 9. Effiuent concentration as a function of time for air flow rates of 500 (1),
500 (2), 300 (3), and 200 (4) mL/s.
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few hundred seconds to approach a new steady state after an abrupt
change in air flow rate at time zero. One obtains substantially lower
effluent concentrations at increased air flow rates, but part of the price
paid for this is an increased discharge of liquid in the foam, as seen in
Fig. 10. We see a rather uneven approach to steady-state operation at the
higher air flow rates here.

One of the column parameters which can readily be varied experi-
mentally is the position of the influent feed. We next examine the effects
on column performance that result from variations in the height of the
influent feed. Figure 11 exhibits the effect of influent feed height on ef-
fluent solute concentration as a function of influent concentration. As
expected, the more foam through which the influent must cascade before

25 mi/sec

s

g

T N———

- 4

... L

-3

H s

-]

£ sh__ 2
¥ ]

o 800 1600 sec

t

Fi1G. 10. Foamate volumetric flow rate as a function of time for air flow rates
of 200 (1), 300 (2), 500 (3), 500 (4), and 600 (5) mL/s.

-5-
g b
8
s I3} °
£ |,
%
2 2}
2
' L L i y E—
0 3 6x10"moles
Ciatt ml

FiG. 11. Steady-state effluent concentration as a function of influent concentra-
tion for various feed heights. Index of slab containing the influent feed head =
10 (1), 2 (2), 7 (3), 5 (4), and 3 (5).
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reaching the bottom of the column, the more complete the removal.
Also, and this was unexpected, the greater the influent feed height, the
higher the influent concentration required to produce extensive solute
breakthrough in the effluent. Figure 12 shows plots of effluent concentra-
tion versus height of influent feed for a number of influent solute con-
centrations.

Increasing the height of the influent feed decreases the length of the
foam drainage section of the flotation column, so that the flux of liquid in
the foam discharged at the top of the column should increase. This
is seen to be the case in Fig. 13. Under the conditions of these runs,
however, a relatively short drainage section (feed plane index = 7, length

o

logyg Cetn {moles/mi)
&
./,

0 2 4 6 8 IJO
index of feed slab

FiG. 12. Steady-state effluent concentration as a function of feed position for
influent concentrations of 1.0 (1), 4.0 (2), 4.5 (3), 5.0 (4), and 6.0 (5) x 10~8

mol/mL.
301 ml/sec index of
feed slab
0
2
)
2
=
‘g ,
8 (s 3,5
0 800 ' 1600 sec

FiG. 13. Foamate flow rate as a function of time for feed slab indices of 3, 5, 7,
9, and 10.
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of drainage section = 85.4 cm) provides almost optimal drainage, so long
drainage sections would appear to be unnecessary.

The flux of air-water interface decreases with increasing bubble size
(other parameters held constant), so we expect increased bubble sizes
to be associated with increased effluent solute concentration, as is shown
to be the case in Fig. 14. Money spent on air dispersion heads which
provide a foam of smail bubbles without excessive pressure drop is
evidently money well spent. We see in Fig. 15 that the effluent flow rate
decreases slightly with decreasing bubble size, which is due to a wetter
foam being discharged from the column as the bubbles are made smaller.
Quualitatively, this is what one would expect.

This program permits us to conveniently model all aspects of the
time-dependent operation of a continuous flow column with stripping and

10xI0™'® moles/mi

Cofft

M

1600 sec

n

o] 800 '

FiG. 14. Effluent concentration as a function of time for bubble diameters of
0.20 (1), 0.25 (2), 0.30 (3), and 0.35 (4) cm.

2501 mi/sec
@
B
4
; 150 3
b 1
[
3
%
50
0 800 ,  1600sec

FiG. 15. Effluent flow rate as a function of time for bubble diameters of 0.20 (1),
0.25 (2), 0.30 (3), and 0.35 (4) cm.
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drainage sections. Quite minor modifications in the program can be made
to include the effects of effluent recycle and/or return of a fraction of the
foamate for reflux.

PARTICLE DETACHMENT

It was shown earlier that thermal forces are extremely small compared
to the viscous drag forces tending to detach floc particles from bubbles
in the flotation of particulate material from a liquid pool (21, 22). A rather
detailed fluid mechanical calculation of the viscous drag forces on a
particle attached to a rising bubble showed that tangential forces are
much larger than radial forces (23), and suggested a “‘squeeze-out” model
for particle detachment. In this model the floc particles occur in a “cap”
on the bottom of the rising bubble; if viscous drag forces become too
large, particles are squeezed out of the bottom of the cap until its size is
reduced to the point where the tangential stress is no longer able to eject
particles bound to the air-water interface. A simplified version of this
model has been analyzed (24). In that calculation the viscous drag per
unit area of bubble was taken as an average value, independent of position.
In fact, the magnitude of the viscous drag varies a great deal over the
surface of a rising bubble, and one must also take boundary layer separa-
tion into account for bubbles which are too large to be in the creeping
flow regime. We do not wish the bubbles to be in the creeping flow regime,
since this leads to quite small capture cross sections (25). We here give
an analysis of the “squeeze-out” model which takes into account boundary
layer separation and the variation of tangential stress with position, and
is applicable to bubbles having large Reynolds numbers ( < 10%).

We assume that the streamlines and velocity of the fluid relative to the
bubble some distance from the bubble are those which pertain in the
inviscid flow regime, and that we must match boundary layer solutions to
the inviscid solutions as is done by Schlichting (26). See Fig. 16. We cal-
culate the rise velocity of the bubble, ., from Ref. 27:

2gpR?
e T 1(pRu,\ 7 034pRu, (40)
U 4\ 2p 125
This equation is valid for Reynolds numbers in the range
R
0 < Re = 2RU=P _ 10 (41)

Here g = gravitational constant
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8.=109.6°

F1G. 16. Boundary layer separation in the inviscid flow regime. Notation.

p = fluid density
R = bubble radius
n = fluid viscosity (poise)

Bird, Stewart, and Lightfoot (28) give the stream function and velocity
potential for inviscid ideal flow past a sphere; these are

u,(R? 5\ L, X
Y = S\~ r7)sin 0 (stream function) 42)
R3
¥ = um<2—r—§ + r) cos 8 (velocity potential) (43)

The velocity components (relative to the bubble) for inviscid ideal flow in
this case are

o R®
U= -3¢ = ._uw<—r—3+ l>cos() (44)
and
1 d¢ R3 .
U9= _;56=u°°<—2?+ I)Slne (45)

Here r and 8 are spherical coordinates with the polar axis in the direction
of motion of the bubble. In the boundary layer adjacent to the bubble the
velocity departs from the inviscid ideal case; we denote the velocity com-
ponents in the boundary layer by 4, and u,. In the boundary layer we must
have u, = 0, and we see that U, (r— R, 0)—0. Evidently the drag on at-
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tached floc particles is associated with u,. The viscous drag (which gener-
ates the tangential stress driving our “squeeze-out” mechanism) is given
by

2
df, = n%’ a4 (46)

where dA is the element of area on which the drag is exerted.
Schlichting (26) gives plots of

us(0, )/ Uy, y) = f(6, ») 47
as a function of
_(ugR\y
Y_(ﬂ> -R, y—r—R (48)

for various values of 6 between 0° and 109.6°, at which point boundary
layer separation occurs.
So

uy(0, y) = Uy, »)f(0, Y) 49)
Then

ouy _ 0t _ 20y LN
or - ay - ay (6) _V)f(e, Y) + ay(e’ Y) dy Ue(e’ Y) (50)

We wish to evaluate this derivative at r = R, or y = ¥ = 0. We see
from Schlichting’s plots that (6, 0) = 0, so we obtain

o 2 I [u Rp\'/2
Y~ ue0geoq("=Y)

ar 51)

r=R

on using Eq. (48). Substituting for Uy from Eq. (45) and setting r = R
yields

6_uq
or

%(%)3/2 (R%) / %(9, 0) sin 6 (52)

it

r=R

We estimate df/0Y from Schlichting’s data, as indicated in Table 1.
This function is graphed in Fig. 17, in which the function is approximated
by a series of lines through points which were obtained from Schlichting’s
graphs.

We let 6, specify the top of the cap of attached particles (see Fig. 16).
The tangential surface pressure at 6, > 0, is then given by
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TABLE 1
Estimation of ¢f/dY

0 aflo Y (0, 0)

0° 2.45
25 2.24
50 1.99
75 1.60
90 1.08
100 0.62
109.6 0.01

25

20

L5

fgﬂ.d
10
0.5
0 30 o 60 90 IéO'

FiG. 17. Plot of df/¢ Y versus 6.

02

P00 = | 5 Rao )

The maximum tangential surface pressure occurs at 0, = 6, = 109.6°,
at which boundary layer separation occurs. On substituting Eq. (52) into
Eq. (53), we obtain for the maximum tangential surface pressure

3 3/2 1/2 bo af :
P01 = 5 () *(pR)" 5y (6-0) sin 0 46 (54)
0, 0Y
We define
° 9
g(8,)) = F 5{,— (6, 0) sin 0 df (55)
0,

and evaluate this function by numerical integration of Eq. (55); a plot
of g(6,) is shown in Fig. 18.
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ﬂ(el)

n

0 I 2
8, (radians)

FiG. 18. Plot of g (6,) versus 8,.

201 cm/sec

ue(R)

o] 05 10cm
R

FiG. 19. Bubble rise velocity as a function of bubble radius, from Eq. (40).

We consider floc particles of radius 10> cm, for which AG =~ 2 x 107°
erg (21). The area occupied by a floc particle on the bubble is about 3.14 x
107'° ¢cm?, and the surface pressure required to squeeze out a particle is

Pl 2 x 107 %erg
S 7314 x 107 Y%m

5 = 6.37 dyn/cm

Given p, R, and #, we can calculate H(R), the factor in front of the inte-
gral in Eq. (54); first one must calculate u(R) from Eq. (40). A plot of
u,(R) versus R is shown in Fig. 19, and Reynolds number as a function
of R is plotted in Fig. 20. A plot of H(R) versus R s given in Fig. 21. These
calculations are for water at 25°C (p=0.997044 g/cm?®, 5 = 0.008937
poise). For bubbles of radius >0.01 cm, we are evidently out of the
creeping flow regime (Re > 1), so our use of inviscid flow streamlines and
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500¢

Re=2pRum/n
Re

250}

0 05 10cm
R

FiG. 20. Reynolds number as a function of bubble radius.

SOf dynes/cm

HR)

25"

A l0cm
0 05 R

FiG. 21. The preintegral factor H(R) as a function of bubble radius.

boundary layer theory is warranted. For specified values of p, R, and 5
we calculate H(R) and then from Fig. 21 we determine the value of 6,
which makes P,™**(0,) = P,'. This permits us to determine the area of
the bubble which may be covered with floc. If we take P/ = 6.37 dyn/cm
and assume a bubble radius of 0.05 cm, we find from Fig. 21 that H(R)=
1.50 dyn/cm, so that g(8,) must be less than 6.37/1.50 = 4.25. We sece
from Fig. 18 that the maximum value of g(8,) is about 2, so this bubble
can be completely coated. A bubble of radius 0.09 cm has H(R) = 4.02,
so g(0,) must be <6.37/4.02 = 1.58. We see from Fig. 18 that 6, must
be 0.63 radians, from which we find that a fraction
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T5¢

S0

Feoia
25

" 1 n e

0 10 20cm
R

Fi1G. 22. Void fraction of bubble surface as a function of bubble radius.

500 cm™
£
£ 200F
3
S 00}
§
‘5' 50}
7}
20r total surface
volume
Iof loaded surfgce
N N s 4 volume
0 10 .20cm

R

FiG. 23. Total surface/volume and loaded surface/volume ratios as functions
of bubble radius.

2 .63 R
50 _L sin 6 d6 d¢ _ 1 —cos 0.63

y 3 = 0.096

Fvoid =

of the bubble surface cannot be covered. A plot of the fraction of bubble
surface which cannot be covered,

1 — cos 8,

Fvoid = 2 (56)
as a function of R is shown in Fig. 22.
The loaded surface per unit volume of air is given by
S 311 - F,,;
i ( VOld) (57)

Vv R

This quantity is plotted (on a semilog scale) as a function of R in Fig. 23.
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We see that the removal efficiency decreases markedly due to the squeeze-
out mechanism for R > 0.0775 cm, although the drop-off is not as extreme
as was calculated in our earlier, simpler model. Bubbles of radius >0.015
cm certainly are out of the creeping flow regime (see Fig. 20), which is
desirable (25), and bubbles of radius <.07 cm can be completely covered
with floc. This bubble size range should be optimal for the floc we have
selected, and similar analyses can be carried out with these plots for other
flocs.

Acknowledgments

This work was supported by a grant from the Vanderbilt University
Research Council. J. E. Kiefer was supported by a Harold Stirling
Vanderbilt Fellowship.

REFERENCES

~

R. Lemlich (ed.), Adsorptive Bubble Separation Techniques, Academic, New York,

1972.

P. Somasundaran, Sep. Sci., 10, 93 (1975).

R. B. Grieves, Chem. Eng. J., 9, 93 (1975).

A. N, Clarke and D. J. Wilson, Sep. Purif. Methods, 7, 55 (1978).

I. H. Newson, J. Appl. Chem., 16, 43 (1966).

P. A. Haas and H. F. Johnson, AICKE J., 11, 319 (1965).

M. Goldberg and E. Rubin, Sep. Sci., 7, 51 (1972).

L. K. Wang, M. L. Granstrom, and B. T. Kown, Environ. Letz., 3, 251 (1972).

K. D. Cannon and R. Lemlich, Chem. Eng. Prog. Symp. Ser., 68(124), 180 (1972).

S. J. Lee, PhD Dissertation, University of Tennessee, 1969.

S. Fanlo and R. Lemlich, Proc. AIChE-Inst. Chem, Eng. Joint Meeting, London,

9, 75 (1965).

R. B. Grieves, 1. U. Ogbu, D. Bhattacharyya, and W. L. Conger, Sep. Sci., 5

583 (1970).

13. E.Valdes-Krieg, C. J. King, and H. H. Sephton, Sep. Purif. Methods, 6, 221 (1977).

14. K. V. Sastry and D. W. Fuerstenau, Trans. AIME, 247, 46 (1970).

15. J. W. Wilson, D. J. Wilson, and J. H. Clarke, Sep. Sci., 11, 223 (1976).

16. Ref. 1, Chap. 2.

17. ). A. Dean (ed.), Lange’s Handbook of Chemistry, 11th ed., McGraw-Hill, New
York, 1973, p. 1-73.

18. Ref. 1, p. 46.

19. S.-d. Huang and D. J. Wilson, Sep. Sci., 10, 407 (1975).

20. R. M. Kennedy and D. J. Wilson, Sep. Sci. Technol., 15, 1339 (1980).

21. D.J. Wilson, Ibid., 13, 107 (1978).

22, B. L. Currin, F. J. Potter, D. J. Wilson, and R. H. French, Ibid., 13, 285 (1978).

23. R. H. French and D. J. Wilson, Ibid., 15, 123 (1980).

24. J. E. Kiefer and D. J. Wilson, Ibid., 15, 57 (1980).

25. R. M. Kennedy and D. J. Wilson, /bid.

26. H. Schlichting, Boundary Layer Theory, Tth ed. (trans, by J. Kestin), McGraw-

Hill, New York, 1979, p. 238.

NP NAMAWN

)

~
i



13: 50 25 January 2011

Downl oaded At:

TIME-DEPENDENT FOAM FLOTATION 7

27. G. M. Fair, J. C. Geyer, and D. A. Okun, Water and Wastewater Engineering,
Vol. 11, Wastewater Treatment and Disposal, Wiley, New York, 1968, Section 25-2.

28. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley,
New York, 1960, p. 149.

Received by editor July 30, 1980



