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SEPARATION SCIENCE AND TECHNOLOGY, 16(2), pp. 147-171, 1981 

Time-Dependent Foam Flotation Stripping Column 
Operation 

JUDY E. KIEFER and DAVID J. WILSON* 
DEPARTMENTOFCHEMISTRY 
VANDERBILT UNIVERSITY 

NASHVILLE, TENNESSEE 37235 

Abstract 

A mathematical model for the time-dependent operation of a foam flotation 
stripping column is presented. Solute and solvent balances are developed for 
the stripping and foam drainage sections of the column, and a Langmuir iso- 
therm is assumed for the surface-active solute. Results of computations with 
the model illustrate the dependence of column performance on influent and air 
flow rates, pulse hydraulic and solute concentrations, bubble size, and column 
geometry. Boundary layer theory is used to calculate the efficiency of foam 
flotation from a pool of liquid as a function of bubble size. 

INTRODUCTION 

Adsorptive bubble separation techniques are of some interest for the 
removal of small amounts of heavy metals and other toxic substances 
from aqueous solution. These methods have been reviewed by Lemlich 
( I )  and others (2-4, for example). Several mathematical models for foam 
column operation have been published; these are generally obtained from 
steady-state material balance considerations at the ends of the column 
(I, 5, 6).  Goldberg and Rubin discussed these models in some detail, and 
analyzed a model of a stripping column without solute transfer in the 
countercurrent section (7). Wang’s treatment of continuous bubble frac- 
tionation includes axial dispersion and equilibrium adsorption isotherms 
(8). Cannon and Lemlich presented a detailed analysis assuming linear 
isotherms (9), as has Lee (20). Fanlo and Lemlich (11); Grieves, 
Bhattacharyya, and their co-workers (12); Valdes-Krieg, King, and 

*To whom correspondence should be addressed. 
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148 KIEFER AND WILSON 

Sephton (13); and Sastry and Fuerstenau (14) have also examined the 
modeling of flotation column operation. 

We earlier analyzed a continuous flow foam flotation column operating 
at  steady state in the stripping mode (15). The model included effects of 
axial dispersion, rate of mass transfer, and nonlinear isotherms. It did 
not, however, provide a way of calculating the wetness of the foam. Also, 
in actual practice such columns are generally not operated in the steady 
state; in wastewater treatment it is almost the rule that influent flow rate 
and solute concentrations vary considerably with time. In order to predict 
the effects of such variations, a time-dependent model is needed. This 
would permit estimation of the solute removal efficiency of a column 
under intermittent shock hydraulic and concentration loadings. 

Here we develop a model for the time-dependent operation of a con- 
tinuous-flow foam flotation column consisting of a stripping section and 
a foam drainage section. We use Haas and Johnson’s analysis of foam 
drainage (6)  and detailed material balances throughout the column. The 
resulting differential equations are integrated forward in time by means 
of a predictor-corrector method. We then give a discussion of some of 
the numerical results obtained. We close with an application of boundary 
layer theory to the calculation of the efficiency of particle flotation by 
bubbles rising through a pool of liquid. 

ANALYSIS 

We first address the problem of foam drainage. The foam is assumed 
to consist of bubbles in the shape of regular dodecahedra, as is generally 
assumed in fairly dry foams (6, 16). Recall that a dodecahedron is a regular 
polyhedron with 12 regular pentagonal faces and 30 edges. If we let I be 
the length of one of these edges, then the surface area of the dodecahedron 
is 20.6457812, and its volume is 7.6631213 (17). We also assume that all 
the bubbles are of identical size, with a volume equal to the volume of a 
sphere of diameter d. 

In following the analysis of Haas and Johnson (16), we assume that 
the Plateau borders formed by three adjacent bubbles can be approxi- 
mated as capillaries of diameter 6 ,  where 6 depends on the wetness of the 
foam. The liquid in these capillaries flows downward due to gravitational 
forces; the flow can be described by Poiseuille’s equation 

APa2 
32ql 

v = -  

where u = velocity of the liquid relative to the capillary 
q = liquid viscosity, poise 
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TIME- D E P E N DENT FOAM FLOTATION I 49 

1 = capillary length 
AP = pressure drop along the length of the capillary 

The pressure drop due to the hydrostatic head in the capillary is given by 

AP = pgl cos 8 ( 2 )  

where p = liquid density 
g = gravitational constant 
8 = angle at which capillary is inclined from the vertical 

With this result, Eq. (1) becomes 

pg cos 8h2 
32rl 

u =  ( 3 )  

the velocity for liquid in a capillary inclined at an angle 8 from the vertical. 
The component of this velocity in the downward direction, u,, is u cos 8. 
The average velocity of the liquid in the z-direction (downward) relative 
to the rising foam, 6,, is then given by 

U, sin 8 d8 r 
vz = nj2 

Jo sin ede 

5’” cos2 8 sin 8 d8 
-- P9d2 0 - 

32q /:‘sin 8 d8 

Since the foam is moving upward at a velocity us, the downward velocity 
relative to the laboratory of the liquid in the Plateau borders is 

- 
Olab = uz - us 

We define epB as the volume of liquid in the Plateau borders per unit 
volume of foam. This is also the area available for liquid flow downward 
per unit area of column cross section. The liquid flux (cm3/cm2s) through 
the Plateau borders relative to the lab is therefore 

(6) 

( 5 )  

F = (0, - ~ , ) ~ p g  

Liquid is also contained in the thin films (lamellae) which are the 
boundary surfaces of the dodecahedra, so we write 
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I50 KIEFER AND WILSON 

where E = volume of liquid per unit volume of foam 
cf = volume of liquid in lamellae per unit volume of foam 

Haas and Johnson make the assumption that the Plateau borders contain 
two-thirds of the liquid in the foam; we leave this fraction as an adjustable 
parameter, 8. 

There are 6(1 - c)/7rd3 bubbles per unit volume of foam, 10 Plateau 
borders per dodecahedra1 bubble (30 edges per dodecahedron, with three 
edges of adjacent dodecahedra meeting to form a border), and each 
Plateau border has a volume of nd2f/4, where I is the length of an edge of 
a dodecahedron. This yields 

6(1 - E )  nd2f 
10 - 4 &pB = ~ 7rd3 

Since 1 = 0.4088d and we are assuming that 

we obtain 

(1 - E ) d 2  

d 2  ~ p g  = 6.132 

and 

PEd d2 = 0.1631 - I - &  

The velocity of the bubble surfaces upward 

G 
us = 

A(1 - &) 

where G = gas flow rate, mL/s 
A = column cross section, cm2 

is given by 

Combining Eqs. (4), (6), (9), (1 I ) ,  and (12) results in an expression for 
F, the liquid flux downward through the Plateau borders, as a function 
of E ,  d, p, and other known quantities: 

3 P S d 2  P 2 E 2  GPE F = 1.699 x 10- - - - 
q I - E A(1 - E )  

The bubble diameter d can be determined experimentally for various gas 
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TIM E-DEPEN DENT FOAM FLOTATION 151 

dispersion heads. Lemlich (18) has noted that for a distribution of bubble 
sizes, d2 should be calculated as 

d2 = C nidi3/C nidi 

p,  q,  G, and A are also known, and E is calculated as a function of time 
and position by means of solvent balances, as shown below. This leaves 
p as the only adjustable parameter. 

In our model we require an expression for the surface area per unit 
volume of foam, S. The surface area of a dodecahedron is 3.4506d2 (17), 
which yields for the surface area per unit volume of bubbles 

3.4506d2 6.59 
nd 3/6 d 

=-  

and then 

6.59 
d s =-(1 - E )  

Equations (12), (13), and (14) will be used in 
equations below to express derivatives in terms 

the material balance 
of known properties, - -  

/?, E ,  and solute concentration c, where E and c are function of time and 
position in the column. 

In foam flotation the solute to be removed is (or is made) surface active 
so that it will adsorb to the surface of a rising bubble and be removed in 
the foam. Huang (19) and Kennedy (20) have shown that the surface 
concentration of a surface-active solute of floc reaches its local equilibrium 
concentration quite quickly under these conditions-the decay constant 
for the approach to equilibrium is the order of a microsecond. We can 
therefore safely assume that the surface concentration of solute is always 
in local equilibrium with the liquid concentration. We use a Langmuir 
adsorption isotherm 

where r = 

r m a x  = 
C l / 2  = 

c =  

r m a x c  r=- 
c1/2 + c 

surface concentration, mol/cm2 
maximum possible surface concentration 
concentration of solute in liquid when r = +I-,,, 
concentration of solute in liquid, mol/cm2 

The column is partitioned into N horizontal slabs of equal size, as 
shown in Fig. 1, so that we may carry out solute and solvent material 
balances. Each slab is considered to be completely mixed, and we assume 
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Foamate 
4 

KIEFER AND WILSON 

FIG. I .  The foam flotation column being modeled. 

no mixing between adjacent slabs. Therefore, solvent Aows into a slab 
through Plateau borders only from the slab above it if F > 0 and from the 
slab below it if F < 0; solvent also moves into the slab in the lamellae 
rising from the slab through the drainage of its own Plateau borders and 
from liquid in the lamellae of the bubbles leaving the slab. We also make 
a similar analysis of solute movement; here we must take into account 
transfer of solute between the liquid and surface phases. 

In general, the solvent balance equations contain five terms, as described 
above, 

+ us,"- 1 ~ f . n -  1 - usn~f ,n I /Ax  (16) 

where Fj = liquid flux through the Plateau borders in the j th  slab; see 
Eq. (13) 

S'(z) = 1 if z > 0 
= O i f z < O  

us, = foam velocity in slab j ,  given by Eq. (12) 
= the value of E in thejth slab 

E , , ~  = (1 - B)cj, the volume fraction of liquid in the lamellar films 

Ax = thickness of a slab 
in the j t h  slab 
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TIME-DEPENDENT FOAM FLOTATION I53 

The slabs are numbered from the bottom of the column. The correspond- 
ing equations for the bottom and top slabs and the slab which receives 
the feed to the column require modification. The equation for the bottom 
slab does not contain the terms resulting from solvent entering from 
below; the equation for the top (Nth) slab does not contain the term 
resulting from solvent drainage from above. At the bottom 

(1 7) -- - [F2S‘(F2) - IF11 - US,1~f,II/AX 
d.2 1 

dt 

At the top 

d.2, 
dt - = [ - F N - l S ’ ( - F N - l )  - lFNl + u s , N - l & f , N - l  - u s , N e f , N I / A x  (18) 

At the slab containing the feed plane 

dE, dt = [ ~ F C + , S f ( F c + , )  - IFcI - F c - l S ‘ ( - F c - l )  

+ %c- l&f,c- I - Us,c&f.c Ax (19) 11 
where Q = volumetric feed rate, mL/s. 

of the column. 
A slightly different equation is used if the feed enters directly at  the top 

We let m, be the mass of solute in slab n, and note that 

This can be written as a quadratic equation in c,: 

0 = E,AAxc,~ + (S,T,,,AAx + E , A A x c ~ / ~  - m,)cn - mnclI2  (23)  

which can be solved for c,. Substitution in Eq. (21) then yields rn. 
Solute material balance on the nth slab then yields 

dm, - = A[S’(Fn+ ,IF,+ 1cn+ 1 - IFnlcn - S’(-Fn- 1)Fn-lCn- 1 dt 

+ U s , n - l E f , n - l C n - l  - Vs,nEJ,nCn + us,n-lSn-lrn-l  - us,nsnrn~ (24) 
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I54 KIEFER AND WILSON 

-- dml - A[S’(F,)F,c, - 
dt 

At the feed plane 

+ %c- 1 E f  ,c- 1 c c -  1 - Us,,&/ ,ccc + %,c- 1%- lrc- 1 - u s , c ~ c r c l  (27) 

We integrate Eqs. (16)-(19) and (24)-(27) forward in time using a simple 
predictor-corrector method having the following algorithm : 

Starter: 

Predictor: 

(29) 
dY y*(t  + A i )  = y(t  - A t )  + 2At - ( t )  di 

Corrector: 

We next need to determine the amounts of solute and water leaving 
the top of the column as foamate and the bottom of the column as effluent. 
From Eq. (25) we can see that the mass of solute leaving the top of the 
column per second in the foamate is given by 

Mfoam = A [ - S ‘ ( - F N ) F N c N  + u s , N E f , N C N  + u s , N S N r N I  (31) 

The volume of liquid leaving the top of the column per second is 

vfoarn = A [ - S ’ ( - F N ) F N  + U s , N E / , N I  (32) 

The mass of solute leaving the bottom of the column per second is 
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TIME-DEPENDENT FOAM FLOTATION I55 

Me,, = AS'(F1)Flcl (33) 

vef f1  = AS'(F,)Fl (34) 

cfoam = Mfoamivfoam (35) 

Ceffl = M e d v e f f l  (36) 

The volume of liquid leaving the bottom of the column per second is 

The concentrations of the solute in the foamate and effluent are given by 

and 

Several parameters can be used to characterize the quality of the 
separation in various ways. One is the ratio of influent to effluent solute 
flux, 

Rsolute = Q c " / M e f f l  (37) 

R v o ~  = Q/Vfoam (38) 

R C O , ,  = co/cl  (39) 

Another is the ratio of influent to foamate volumetric flow rates, 

A third is the ratio of influent to effluent solute concentrations, 

RESULTS 

The parameters generally used in the computer program simulating 
column operation are as follows: 

column length 
column cross-sectional area 
number of slabs into which the 

column is partitioned 
index of the feed plane slab 
r m a x  

ell2 
air flow rate 
liquid flow rate 
B 
bubble diameter 
liquid density 
liquid viscosity 
influent concentration 
At 

244 cm 
670 cm2 

10 
5 
6 x 10-'0mol/cm2 
1 x mol/cm3 

400 mL/s 
150 mL/s 

0.75 
0.25 cm 
1 .O g/mL 
0.009 poise 
I x 10-8mol/cm3 
0.1 s 
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I56 KIEFER AND WILSON 

The column parameters correspond to a small pilot-plant column we have 
operated. These parameters, an initial column solute concentration of 

mol/mL, and a value of E = 0.10 were used to initialize a run, which 
was then simulated for 30 min of column operation. The resulting state 
of the column was used as initial conditions for all of the runs described 
below. This initialization procedure markedly reduces the computer time 
required for the column to approach steady-state operation. All runs were 
made on a DEC system 1099 computer. 

The effect of influent concentration on effluent concentration for 
various influent flow rates in steady-state operation is shown in Fig. 2. 
The Langmuir isotherm we are using gives us quite good removal efficien- 
cies up almost to the point at  which the bubbles are saturated, above which 
further increases in influent concentration result in a rather abrupt 
deterioration of removal efficiency. Figures 3a and 3b show the rate of 
approach to the new steady state when the influent concentration is 
changed abruptly at time zero. The transient responses of the column to 
square-wave shock influent concentration pulses of various heights and 
durations are exhibited in Figs. 4-6. The time constant of the system 
appears to be of the order of 5 min, and it is apparent that the column 
can absorb short concentration overloads without discharging effluent 
of the poor quality which one would expect on the basis of steady-state 
performance. 

The effect of influent flow rate on steady-state effluent solute concentra- 
tion is shown in Fig. 7 for various influent concentrations. As the influent 
solute flux increases with increasing flow rate, the column eventually 

crm, moler/ml 

FIG. 2. Effluent concentration as a function of influent concentration at various 
flow rates in steady state operation. Influent flow rate = 250 (l), 200 (2), 150 
(3), and 100 mL/s; other parameters as given in the text, as is the case through 

Fig. 15. 
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J 

3 

I '  . 1 

0 400 + 000 sac 

16 XlO-" molrr/ml r 

1 

0 400 000 H C  
t 

FIG. 3a. Efluent concentration as a function of time for influent concentrations 

FIG. 3b. Effluent concentration as a function of time for influent concentrations 
of 3.5,4.0, and 4.5 x lo-' mol/mL (1 through 3). 

of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 x mol/mL (1 through 6). 

5 

I 

0 800 1600rrc 

FIG. 4. Effluent concentration as a function of time for 5-min square-wave 
influent concentration pulses. The influent concentration is 1 x mol/mL 
for 0 < t < 300s and for f > 6 0 0 s .  For 300 < t <6OOs, clnI1 = 2.0 (l), 

3.0 (2), 3.5 (3), and 5.0 (4) x lo-* mol/mL. 
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I58 KIEFER AND WILSON 

FIG. 5. Effluent concentration as a function of time for 10-min square-wave 
influent concentration pulses. The influent concentration is 1 x mol/mL 
for 0 < t < 300 s and r > 900 s. For 300 < t <c 900 s, cinll = 2.0 (I) ,  3.0 (2),  

3.5 (3), and 4.0 (4) x lo-' mol/mL. 

FIG. 6. Effluent concentration as a function of time for square-wave influent 
concentration pulses of various durations. CM = 1 x mol/rnL for 
0 < t < 300s and for T < t < 1800s. For 300 < t <c T, cinf, = 5 x 

mol/mL. T = 600 (l), 750 (2), and 900 (3) s. 

-7 r 

influent flow rote 

FIG. 7. Steady-state effluent concentration as a function of influent flow rate. 
cinIl = 1.0 (l), 2.0 (2), and 3.0 (3) x mol/mL. 
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TIME-DEPENDENT FOAM FLOTATION I59 

reaches the point where all the available air-water interface is saturated, 
at which point the effluent concentration abruptly increases. The effects 
of transient square-wave variations in the influent flow rate are shown in 
Fig. 8. These runs show that small flow rate increases of long duration 
result in less discharge of solute in the effluent than larger increase in 
flow rate for correspondingly shorter time periods. Evidently foam flota- 
tion columns should be used with flow equalization tanks if flow rate 
transients are expected. 

Air-water interface is the “reagent” which brings about solute removal; 
if its availability is decreased by decreasing the air flow rate, one would 
expect the efficiency of solute removal from the effluent to decrease. In 
Fig. 9 we see that this is in fact the case, and that the column requires a 

IOr XIO-’~ rnolrr/mi 

FIG. 8. Effluent concentration as a function of time for various square-wave 
influent flow rate pulses. The base influent flow rate is 150 mL/s. For Run 1 
the influent flow rate for 3 0 0  < t < 1200 s is 300; for Run 2, 300 < t < 840 s, 

it is 400; for Run 3, 300 < t < 750 s, it is 450 mL/s. 

4 

c 

a 
> 

0 800 , 1600 ooc 

FIG. 9. Effluent concentration as a function of time for air flow rates of 500 (I), 
500 (2), 300 (3), and 200 (4) mL/s. 
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I60 KIEFER AND WILSON 

few hundred seconds to approach a new steady state after an abrupt 
change in air flow rate a t  time zero. One obtains substantially lower 
effluent concentrations at  increased air flow rates, but part of the price 
paid for this is an increased discharge of liquid in the foam, as seen in 
Fig. 10. We see a rather uneven approach to steady-state operation at the 
higher air flow rates here. 

One of the column parameters which can readily be varied experi- 
mentally is the position of the influent feed. We next examine the effects 
on column performance that result from variations in the height of the 
influent feed. Figure 11 exhibits the effect of influent feed height on ef- 
fluent solute concentration as a function of influent concentration. As 
expected, the more foam through which the influent must cascade before 

L e 
c 

I 
I 

0 800 , 1600rec 

FIG. 10. Foamate volumetric flow rate as a function of time for air flow rates 
of 200 (l), 3 0 0  (2),  500 (3), 500 (4), and 600 (5) mL/s. 

FIG. 1 1 .  Steady-state effluent concentration as a function of influent concentra- 
tion for various feed heights. Index of slab containing the influent feed head = 

10 (11, 9 (21, 7 (31, 5 (41, and 3 ( 5 ) .  
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c. 

j - 
0 

-13 
e 
0 

0 

- 
0 - 

-2 I 

reaching the bottom of the column, the more complete the removal. 
Also, and this was unexpected, the greater the influent feed height, the 
higher the influent concentration required to produce extensive solute 
breakthrough in the effluent. Figure 12 shows plots of effluent concentra- 
tion versus height of influent feed for a number of influent solute con- 
centrations. 

Increasing the height of the influent feed decreases the length of the 
foam drainage section of the flotation column, so that the flux of liquid in 
the foam discharged at the top of the column should increase. This 
is seen to be the case in Fig. 13. Under the conditions of these runs, 
however, a relatively short drainage section (feed plane index = 7, length 

I # , % $  
I 

FIG. 12. Steady-state effluent concentration as a function of feed position for 
influent concentrations of 1.0 (l), 4.0 (2), 4.5 (3), 5.0 (4), and 6.0 (5) x 

mol/mL. 

30 mVsoc index of r food slob 

S 

r 
a, I c 6 -  

1 

0 800 + 1600 mc 

FIG. 13. Foamate flow rate as a function of time for feed slab indices of 3, 5, 7, 
9, and 10. 
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I 62 KIEFER AND WILSON 

of drainage section 85.4 cm) provides almost optimal drainage, so long 
drainage sections would appear to be unnecessary. 

The flux of air-water interface decreases with increasing bubble size 
(other parameters held constant), so we expect increased bubble sizes 
to be associated with increased effluent solute concentration, as is shown 
to be the case in Fig. 14. Money spent on air dispersion heads which 
provide a foam of small bubbles without excessive pressure drop is 
evidently money well spent. We see in Fig. 15 that the effluent flow rate 
decreases slightly with decreasing bubble size, which is due to a wetter 
foam being discharged from the column as the bubbles are made smaller. 
Qualitatively, this is what one would expect. 

This program permits us to conveniently model all aspects of the 
time-dependent operation of a continuous flow column with stripping and 

I 
1 

0 800 1600 8ec 

FIG. 14. Effluent concentration as a function of time for bubble diameters of 
0.20 (l), 0.25 (2), 0.30 ( 3 ) ,  and 0.35 (4) cm. 

0 800 160Oscn: 

FIG. 15. Effluent flow rate as a function of time for bubble diameters of 0.20 (l), 
0.25 (2), 0.30 ( 3 ) ,  and 0.35 (4) cm. 
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drainage sections. Quite minor modifications in the program can be made 
to include the effects of effluent recycle and/or return of a fraction of the 
foamate for reflux. 

PARTICLE DETACH M E NT 

It was shown earlier that thermal forces are extremely small compared 
to the viscous drag forces tending to detach floc particles from bubbles 
in the flotation of particulate material from a liquid pool (21,22).  A rather 
detailed fluid mechanical calculation of the viscous drag forces on a 
particle attached to a rising bubble showed that tangential forces are 
much larger than radial forces (24, and suggested a “squeeze-out’’ model 
for particle detachment. In this model the floc particles occur in a “cap” 
on the bottom of the rising bubble; if viscous drag forces become too 
large, particles are squeezed out of the bottom of the cap until its size is 
reduced to the point where the tangential stress is no longer able to eject 
particles bound to the air-water interface. A simplified version of this 
model has been analyzed (24). In that calculation the viscous drag per 
unit area of bubble was taken as an average value, independent of position. 
In fact, the magnitude of the viscous drag varies a great deal over the 
surface of a rising bubble, and one must also take boundary layer separa- 
tion into account for bubbles which are too large to be in the creeping 
flow regime. We do not wish the bubbles to be in the creeping flow regime, 
since this leads to quite small capture crass sections (25). We here give 
an analysis of the “squeeze-out” model which takes into account boundary 
layer separation and the variation of tangential stress with position, and 
is applicable to bubbles having large Reynolds numbers (I lo4). 

We assume that the streamlines and velocity of the fluid relative to the 
bubble some distance from the bubble are those which pertain in the 
inviscid flow regime, and that we must match boundary layer solutions to 
the inviscid solutions as is done by Schlichting (26). See Fig. 16. We cal- 
culate the rise velocity of the bubble, u,, from Ref. 27: 

2aoR2 

This equation is valid for Reynolds numbers in the range 

Here g = gravitational constant 
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FIG. 16. Boundary layer separation in the inviscid flow regime. Notation. 

p = fluid density 
R = bubble radius 
q = fluid viscosity (poise) 

Bird, Stewart, and Lightfoot (28) give the stream function and velocity 
potential for inviscid ideal flow past a sphere; these are 

R3 
$ = "(- - r z )  sin' e (stream function) 2 r  

R3 + = urn(- 2r2 + ) cos (velocity potential) (43) 

The velocity components (relative to the bubble) for inviscid ideal flow in 
this case are 

and 

Here r and 8 are spherical coordinates with the polar axis in the direction 
of motion of the bubble. In the boundary layer adjacent to the bubble the 
velocity departs from the inviscid ideal case; we denote the velocity com- 
ponents in the boundary layer by u, and u,. In the boundary layer we must 
have u, = 0, and we see that U,(r+R, 0)+0. Evidently the drag on at- 
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tached floc particles is associated with ue. The viscous drag (which gener- 
ates the tangential stress driving our "squeeze-out" mechanism) is given 
by 

where dA is the element of area on which the drag is exerted. 
Schlichting (26) gives plots of 

ue@, Y) /  Ude,  Y )  E f (e, Y )  (47) 

as a function of 

for various values of 8 between 0" and 109.6", at which point boundary 
layer separation occurs. 

so 
ue(6, Y )  = C'e(e9 y)f (e, Y )  (49) 

Then 

We wish to evaluate this derivative at r = R, or y = Y = 0. We see 
from Schlichting's plots that f ( e ,  0) = 0, so we obtain 

on using Eq. (48). Substituting for Ue from Eq. (45) and setting r = R 
yields 

We estimate aflaY from Schlichting's data, as indicated in Table 1 .  
This function is graphed in Fig. 17, in which the function is approximated 
by a series of lines through points which were obtained from Schlichting's 
graphs. 

We let 6, specify the top of the cap of attached particles (see Fig. 16). 
The tangential surface pressure at  0, > 8, is then given by 
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TABLE 1 

Estimation of af/a Y 

0" 
25 
50 
75 
90 

100 
109.6 

2.45 
2.24 
1.99 
1.60 
1.08 
0.62 
0.01 

FIG. 17. Plot of dfld Y versus 8. 

The maximum tangential surface pressure occurs at  O2 = 8, = 109.6", 
at which boundary layer separation occurs. On substituting Eq. (52) into 
Eq. (53), we obtain for the maximum tangential surface pressure 

(54) 
3 

Psmax(8,) = j ( ~ , ) ~ / ~ ( p R q ) ~ / ~  

We define 

and evaluate this function by numerical integration of Eq. (55); a plot 
of g(0,) is shown in Fig. 18. 
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FIG. 18. Plot of g (0,) versus 0,. 

FIG. 19. Bubble rise velocity as a function of bubble radius, from Eq. (40). 

We consider floc particles of radius lo-' cm, for which AG 2 2 x 
erg (21). The area occupied by a floc particle on the bubble is about 3.14 x 
lo-" cm2, and the surface pressure required to squeeze out a particle is 

2 x 1W9erg 
- 6.37 dyn/cm ''' = 3.14 x 1O-"cm2 - 

Given p ,  R,  and q, we can calculate H(R), the factor in front of the inte- 
gral in Eq. (54); first one must calculate u,(R) from Eq. (40). A plot of 
u,(R) versus R is shown in Fig. 19, and Reynolds number as a function 
of R is plotted in Fig. 20. A plot of H(R)  versus R is given in Fig. 21. These 
calculations are for water at 25°C (p=0.997044 g/cm3, q = 0.008937 
poise). For bubbles of radius >0.01 cm, we are evidently out of the 
creeping flow regime (Re > l), so our use of inviscid flow streamlines and 
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500 

Ro 

250 

- 

- 

- 

Re = 2pR u d t ,  / 

-I 

.IOcm 

FIG. 20. Reynolds number as a function of bubble radius. 

FIG. 21. The preintegral factor H(R)  as a function of bubble radius. 

boundary layer theory is warranted. For specified values of p, R, and q 
we calculate H(R) and then from Fig. 21 we determine the value of d 1  
which makes P,"""(B,) = P,'. This permits us to determine the area of 
the bubble which may be covered with floc. If we take P,' = 6.37 dyn/cm 
and assume a bubble radius of 0.05 cm, we find from Fig. 21 that H(R)= 
1.50dyn/cm, so that g(0,) must be less than 6.37/1.50 = 4.25. We see 
from Fig. 18 that the maximum value of g(B,) is about 2, so this bubble 
can be completely coated. A bubble of radius 0.09 cm has H(R) = 4.02, 
so g ( 0 , )  must be r6.37/4.02 = 1.58. We see from Fig. 18 that d1 must 
be 0.63 radians, from which we find that a fraction 
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.50 751 -W 

0 .I0 .20 cm 
R 

FIG. 22. Void fraction of bubble surface as a function of bubble radius. 

5 0 9  cm" 

0 .I0 .20 cm 
R 

FIG. 23. Total surface/volume and loaded surface/volume ratios as functions 
of bubble radius. 

of the bubble surface cannot be covered. A plot of the fraction of bubble 
surface which cannot be covered, 

1 - coso, F .  = 
2 void 

as a function of R is shown in Fig. 22. 
The loaded surface per unit volume of air is given by 

This quantity is plotted (on a semilog scale) as a function of R in Fig. 23. 
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We see that the removal efficiency decreases markedly due to the squeeze- 
out mechanism for R > 0.0775 cm, although the drop-off is not as extreme 
as was calculated in our earlier, simpler model. Bubbles of radius > 0.01 5 
cm certainly are out of the creeping flow regime (see Fig. 20), which is 
desirable (25), and bubbles of radius < .07 cm can be completely covered 
with floc. This bubble size range should be optimal for the floc we have 
selected, and similar analyses can be carried out with these plots for other 
flocs. 
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